发布人:管理员 发布时间:2023-03-09
01 Q:NMR能做什么?
NMR(核磁共振波谱法)是研究原子核对射频辐射的吸收,是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时亦可进行定量分析。核磁共振是有机化合物结构鉴定的一个重要手段,一般根据化学位移鉴定基团;由偶合分裂峰数、偶合常数确定基团联结关系;根据各H峰积分面积定出各基团质子比。核磁共振谱可用于化学动力学方面的研究,如分子内旋转,化学交换等。核磁共振还用于研究聚合反应机理和高聚物序列结构。二维核磁共振谱已经可以解析分子量较小的蛋白质分子的空间结构。核磁共振谱是有机化学家们心目中的“四大名谱”之一(包括:紫外光谱、红外光谱和质谱)。H谱、C谱是应用量广泛的核磁共振谱,较常用的还有F、P、N等核磁共振谱。下载化学加APP,阅读更有效率。
02 Q:元素周期表中所有元素都可以测出核磁共振谱吗?
不是。首先,被测的原子核的自旋量子数要不为零;其次,自旋量子数[敏感词]为1/2(自旋量子数大于1的原子核有电四极矩,峰很复杂);第三,被测的元素(或其同位素)的自然丰度比较高(自然丰度低,灵敏度太低,测不出信号)。
03 Q:怎么解析核磁共振氢谱?
一般先确定孤立甲基及类型,以孤立甲基峰面积的积分高度,计算出氢分布;其次是解析低场共振吸收峰(如醛基氢、羰基氢等),因这些氢易辨认,根据化学位移,确定归属;最后解析谱图上的高级偶合部分,根据偶合常数、峰分裂情况及峰型推测取代位置、结构异构、立体异构等二级结构信息。
04 Q:怎么解析核磁共振碳谱?
一般先查看全去偶碳谱上谱线数与分子式中所含碳数是否相同?数目相同说明每个碳的化学环境都不同,分子无对称性;数目不相同(少)说明有碳的化学环境相同,分子有对称性;然后由偏共振谱,确定与碳偶合的氢数;最后由各碳的化学位移,确定碳的归属。
05 Q:怎么结合应用碳谱和氢谱?
C谱和H谱可互相补充。H谱不能测定不含氢的官能团,如羰基和氰基等;对于含碳较多的有机物,如甾体化合物,常因烷氢的化学环境相似,而无法区别,这是氢谱的弱点;而碳谱弥补了氢谱的不足,它能给出各种含碳官能团的信息,几乎可分辨每一个碳核,能给出丰富的碳骨架信息。但是普通碳谱的峰高常不与碳数成正比是其缺点,而氢谱峰面积的积分高度与氢数成正比,因此二者可互为补充。
06 Q:如何计算偶合常数?
在网上有这样一个求助帖:请教偶合常数的计算, 比如 :—OCH2CH3 这两个碳上的氢之间的化学位移差值一般超过2了,400M核磁,那再乘以400的话,偶合常数岂不是快一千了?首先我们得搞明白偶合常数的定义:自旋偶合会产生共振峰的分裂后,两裂分峰之间的距离(以Hz为单位)称为偶合常数。不是两组氢之间化学位移的差值,而是一组峰中相邻两个峰之间的化学位移的差值!可以从偶合常数看出基团间的关系,邻位偶合常数较大,远程偶合常数较小。还可以利用Kapulus公式计算邻位氢的二面角。对于有双键的化合物,顺式的氢之间偶合常数为6~10Hz,反式的氢之间偶合常数为12~16Hz。
07 Q:配制样品为什么要用氘代试剂?怎样选择氘代试剂?
因为测试时溶剂中的氢也会出峰,溶剂的量远远大于样品的量,溶剂峰会掩盖样品峰,所以用氘取代溶剂中的氢,氘的共振峰频率和氢差别很大,氢谱中不会出现氘的峰,减少了溶剂的干扰。在谱图中出现的溶剂峰是氘的取代不完全的残留氢的峰。另外,在测试时需要用氘峰进行锁场。由于氘代溶剂的品种不是很多,要根据样品的极性选择极性相似的溶剂,氘代溶剂的极性从小到大是这样排列的:苯、氯仿、乙腈、丙酮、二甲亚砜、吡啶、甲醇、水。还要注意溶剂峰的化学位移,[敏感词]不要遮挡样品峰。
08 Q:怎么在H谱中更好的显示活泼氢?
与O、S、N相连的氢是活泼氢,想要看到活泼氢一定选择氘代氯仿或DMSO做溶剂。在DMSO中活泼氢的出峰位置要比CDCl3中偏低些。活泼氢由于受氢键、浓度、温度等因素的影响,化学位移值会在一定范围内变化,有时分子内的氢键的作用会使峰型变得尖锐。下载化学加APP,阅读更有效率。
09 Q:怎么做重水交换?
为了确定活泼氢,要做重水交换。方法是:测完样品的氢谱后,向样品管中滴几滴重水(不宜加入过多,一般1-2滴即可),振摇一下,再测氢谱,谱中的活泼氢就消失了。醛氢和酰胺类的氨基氢交换得很慢,需要长时间放置再测谱或者用电吹风加热一下,放置一会再进行检测。此时会发现谱图中水峰信号增强,在CDCl3中此时的HDO峰会在4.8ppm的位置。此外,甲醇和三氟醋酸都有重水交换作用,看不到活泼氢的峰。
10 Q:解析合成化合物的谱、植物中提取化合物的谱和未知化合物的谱,思路有什么不同?
合成化合物的结果是已知的,只要用谱和结构对照就可以知道化合物和预定的结构是否一致。对于植物中提取化合物的谱,首先应看是哪一类化合物,然后用已知的文献数据对照,看是否为已知物,如果文献中没有这个数据则继续测DEPT谱和二维谱,推出结构。对于一个全未知的化合物,除测核磁共振外,还要结合质谱、红外、紫外和元素分析,一步步推测结构。